First Quarter Moon at 6:38 UT.
2 Moon near Saturn at 0h UT (evening sky). Mag. 0.7.
4 Moon near Jupiter at 23h UT (evening sky). Mag. -2.8.
8 Total Lunar Eclipse begins at 10:17 UT and ends at 11:41 UT. Greatest eclipse at 10:59 UT. Partial phases begin at 9:09 UT and end at 12:49 UT. During totality the Moon will appear red-orange in color once it passes into the Earth’s shadow; the color of all the sunsets and sunrises in Earth’s atmosphere. The total lunar eclipse will be visible from Asia, Australia, the Pacific and the Americas.
9 Full Moon at 11:02 UT.
8 Moon near Uranus at 13h UT (midnight sky). Mag. 5.6. Occultation visible from east Asia, Japan & Alaska.
8 Mercury at superior conjunction with the Sun at 8h UT (evening sky). Mag. 5.6.
8 Uranus at opposition at 8h UT. Mag. 5.6.
8 Moon near the Pleiades at 15h UT (morning sky).
10 Moon near Aldebaran at 9h UT (morning sky).
11 Moon near Mars at 14h UT (morning sky). Mag. -1.5.
12 Moon at northernmost declination (27.5°) at 14h UT.
14 Moon at apogee (farthest from Earth) at 7h UT (distance 404,921km; angular size 29.5').
15 Moon near Beehive cluster M44 at 5h UT (morning sky).
16 Last Quarter Moon at 13:28 UT.
17 Moon near Regulus at 2h UT (morning sky).
19 Leonid meteor shower peaks at 6h UT. Arises from debris ejected by comet 55P/Tempel-Tuttle. Produces very fast meteors (70 km/sec). Expect 10–15 meteors per hour under dark skies. Moonlight will interfere with observations.
21 Moon near Spica at 8h UT (morning sky).
23 New Moon at 22:56 UT. Start of lunation 1236.
26 Moon at perigee (closest to Earth) at 1:37 UT (distance 362,826km; angular size 32.9').
29 Moon near Saturn at 8h UT (evening sky). Mag. 0.8.
30 First Quarter Moon at 14:37 UT.

More sky events and links at http://Skymaps.com/skycalendar/
All times in Universal Time (UT). (USA Eastern Standard Time = UT – 5 hours.)
About the Celestial Objects

Listed on this page are several of the brightest, more interesting celestial objects visible in the evening sky this month (refer to the monthly sky map). The objects are grouped into three categories. Those that can be easily seen with the naked eye (that is, without optical aid), those easily seen with binoculars, and those requiring a telescope to be appreciated. Note, all of the objects (except single stars) will appear more impressive when viewed through a telescope or very large binoculars. They are grouped in this way to highlight objects that can be seen using the optical equipment that may be available to the star gazer.

Tips for Observing the Night Sky

When observing the night sky, and in particular deep-sky objects such as star clusters, nebulae, and galaxies, it’s always best to observe from a dark location. Avoid direct light from street lights and other sources. If possible observe from a dark location away from the light pollution that surrounds many of today’s large cities.

You will see more stars after your eyes adapt to the darkness—usually about 10 to 20 minutes after you go outside. Also, if you need to use a torch to view the sky map, cover the light bulb with red cellophane. This will preserve your dark vision.

Finally, even though the Moon is one of the most stunning objects to view through a telescope, its light is so bright that it brightens the sky and makes many of the fainter objects very difficult to see. So try to observe the evening sky on moonless nights around either New Moon or Last Quarter.

Astronomical Glossary

Conjunction – An alignment of two celestial bodies such that they present the least angular separation as viewed from Earth.

Constellation – A defined area of the sky containing a star pattern.

Diffuse Nebula – A cloud of gas illuminated by nearby stars.

Double Star – Two stars that appear close to each other in the sky; either linked by gravity so that they orbit each other (binary star) or lying at different distances from Earth (optical double). Apparent separation of stars is given in seconds of arc (').

Ecliptic – The path of the Sun’s center on the celestial sphere as seen from Earth.

Elongation – The angular separation of two celestial bodies. For Mercury and Venus the greatest elongation occurs when they are at their most angular distance from the Sun as viewed from Earth.

Galaxy – A mass of up to several billion stars held together by gravity.

Global Star Cluster – A ball-shaped group of several thousand old stars.

Light Year (ly) – The distance a beam of light travels at 300,000 km/sec in one year.

Magnitude – The brightness of a celestial object as it appears in the sky.

Open Star Cluster – A group of tens or hundreds of relatively young stars.

Opposition – When a celestial body is opposite the Sun in the sky.

Planetary Nebula – The remnants of a shell of gas blown off by a star.

Universal Time (UT) – A time system used by astronomers. Also known as Greenwich Mean Time. USA Eastern Standard Time (for example, New York) is 5 hours behind UT.

Variable Star – A star that changes brightness over a period of time.

Easily Seen with the Naked Eye

Altair	Aql	Brightest star in Aquila. Name means "the flying eagle". Dist=16.7 ly.
δ Cephei	Cep	Brightest prototype. Magn varies between 3.5 & 4.4 over 5,366 days. Mag 6.0.
Deneb	Cyg	Brightest star in Cygnus. One of the greatest known supergiants. Dist=1,400±200 ly.
ξ Herculis	Her	Semi-regular variable. Magnitude varies between 3.1 & 3.9 over 90 days. Mag 5.4.
Vega	Lyr	The 5th brightest star in the sky. A blue-white star. Dist=25.0 ly.
Algon Perin	Per	Famous eclipsing binary star. Magnitude varies between 2.1 & 3.4 over 2,867 days.
Fomalhaut	PsA	Very fine star cluster. Discovered by Messier in 1764. Dist=4,400 ly.
Pleiades	Tau	The Seven Sisters. Spectacular cluster. Many stars visible in binoculars. Dist=399 ly.
Hyades	Tau	Large V-shaped star cluster. Binoculars reveal many more stars. Dist=152 ly.
Aldebaran	Tau	Brightest star in Taurus. It is not associated with the Hyades star cluster. Dist=66.7 ly.

Easily Seen with Binoculars

M31	And	The Andromeda Galaxy. Most distant object visible to naked eye. Dist=2.5 million ly.
M2	Apr	Resembles a fuzzy star in binoculars.
η Aquilae	Aql	Bright Cepheid variable. Mag varies between 3.6 & 4.5 over 7,166 days. Dist=1,200 ly.
M38	Aur	Stars appear arranged in "pi" or cross shape. Dist=4,300 ly.
M36	Aur	About half size of M38. Located in rich Milky Way star field. Dist=4,100 ly.
M37	Aur	Very fine star cluster. Discovered by Messier in 1764. Dist=4,400 ly.
μ Cephei	Cep	Herschel’s Garnet Star. One of the reddest stars. Mag 3.4 to 5.1 over 730 days.
Mira	Cet	Famous long period variable star. Mag varies between 3.0 & 10.1 over 332 days.
χ Cygni	Cyg	Long period pulsating red giant. Magnitude varies between 3.3 & 14.2 over 407 days.
M39	Cyg	May be visible to the naked eye under good conditions. Dist=900 ly.
v Dracoris	Dra	Wide pair of white stars. One of the finest binocular pairs in the sky. Dist=100 ly.
M13	Her	Best globular in northern skies. Discovered by Halley in 1716. Dist=23,000 ly.
M92	Her	Fainter and smaller than M13. Use a telescope to resolve its stars.
ι Lyrae	Lyr	Famous Double Double. Binoculars show a double star. High power reveals each a double.
R Lyrae	Lyr	Semi-regular variable. Magnitude varies between 3.9 & 5.0 over 46.0 days.
IC 4665	Oph	Large, scattered open cluster. Visible with binoculars.
6633	Oph	Scattered open cluster. Visible with binoculars.
M15	Peg	Only globular known to contain a planetary nebula (Mag 14, d=1”). Dist=30,000 ly.
M25	Sgr	Bright cluster located about 6 deg N of "teapot’s lid". Dist=1,900 ly.
253	Scl	Fine, large, cigar-shaped galaxy. Requires dark sky. Member of Sculptor Group.
Mizar & Alcor	UMa	Good eyepiece or binoculars reveals 2 stars. Not a binary. Mizar has a mag 4 companion.
Cr 399	Vul	Coathanger asterism or "Brocchio’s Cluster". Not a true star cluster. Dist=218 to 1,140 ly.

Telescopic Objects

γ Andromedae	And	Attractive double star. Bright orange star with mag 5 blue companion. Sep=9.8”.
7009	Aqr	Saturn Nebula. Requires 8-inch telescope to see Saturn-like appendages.
γ Arietis	Ari	Impressive looking double white-blue star. Visible in a small telescope. Sep=7.8”.
γ Cassiopeiae	Cas	Yellow star mag 3.4 & orange star mag 7.5. Dist=19 ly. Orbit=480 years. Sep=12”.
Albireo	Cyg	Beautiful double star. Contrasting colours of orange and blue-green. Sep=3.44”.
61 Cygni	Cyg	Attractive double star. Mags 5.2 & 6.1 orange dwarfs. Dist=11.4 ly. Sep=28.4”.
ω Delphini	Del	Appear yellow & white. Mags 4.3 & 5.2. Dist=100 ly. Stuve 2725 double in same field.
β Lyrae	Lyr	Eclipsing binary. Mag varies between 3.3 & 4.3 over 12,940 days. Fainter mag 7.2 blue star.
M17	Sgr	Contains the star cluster NGC 618. Dist=4,900 ly.
M16	Ser	Eagle Nebula. Requires a telescope of large aperture. Dist=8,150 ly.
M1	Tau	Crab Nebula. Remnant from supernova which was visible in 1054. Dist=6,500 ly.
M33	Tri	Fine face-on spiral galaxy. Requires a large aperture telescope. Dist=2.3 million ly.
M81	UMa	Beautiful spiral galaxy visible with binoculars. Easy to see in a telescope.
M82	UMa	Close to M81 but much fainter and smaller.